Tone in Buli

George Akanlig-Pare & Michael Kenstowicz
University of Ghana & Massachusetts Institute of Technology

The paper analyzes the principal tonal contrasts and alternations in Buli from both synchronic and diachronic, comparative perspectives. The role of tone in the inflectional morphology as well as the phonetic implementation of tonal contrasts is also discussed.

1. Introduction

Buli is a Gur language spoken by some 100,000 persons in the Upper East region of Ghana. Previous study of the language is limited to several papers by the first author (Akanlig-Pare 1994, 1997, 1999) and the dictionaries by Mélançon and Prost (1972) and Kröger (1992). In this paper we survey the major tonal contrasts and tonal processes. Next we place the language in a larger context by comparing various features of Buli tone with other, better-studied Gur languages. We then pass on to the inflectional tonology of the nouns and the

* We thank the participants in the Spring 2002 Less Familiar Languages class at MIT for many helpful comments. Thanks also to two anonymous reviewers as well as to Laura Downing, Morris Halle, Victor Manfredi, Scott Myers, and Cheryl Zoll.
verbs. The paper closes with a description of the Fo implementation of the major
tonal structures discussed in the paper. Our study is based on the speech of the
first author, a native speaker of the Central dialect.

2. Tonal Contrasts

Buli distinguishes three lexical tones: high, mid, and low. There is no downstep.
The language has a surface rising tone but it is a predictable variant of an
underlying high tone. While nouns and adjectives contrast for the three tonal
levels, verbs have no lexical contrasts in tone. However, tense and aspectual
distinctions are encoded tonally making for an intricate set of tonal paradigms
for verbs. The syllable is the tone-bearing unit in Buli. Even though the
language combines a vowel length distinction with an optional coda of one or
two consonants, there is no underlying tonal contrast as a function of syllable
shape. In (1a) we cite some minimal pairs. The data in (1b) show the
independence of tone and syllable shape.

(1) H M L

a. s’uifikasi path s’uifikasi navel s’uifikasi fish sp.

 naLifikasi cow naLifikasi chief

 biLifikasi child biLifikasi laniguałe

 baLifikasi baniale baLifikasi lizard
3. Tonal Processes

There are two very general tonal processes in Buli: Low Tone Spread (LTS) and Rising Tone Absorption (RTA); (see Akanlig-Pare 1997 for more discussion). By the first process a high tone syllable becomes rising when it follows a low tone syllable. In autosegmental terms, a low tone spreads to a following high-tone syllable.¹

(2)
\[\text{L} \quad \text{H} \]

Low-Tone Spreading applies word internally as well as at the phrasal level across word boundaries.

¹ The data are analyzed in terms of ordered rules instead of Optimality Theoretic constraints for the sake of familiarity and convenience. Our transcriptions abstract away from an ATR difference in the vowels that is unstable and seems to be disappearing from the language.
(3) word internally:

\begin{align*}
 b'e & \text{ seeds} \\
 ba'sa & \text{ lizards}
\end{align*}

\begin{align*}
 b'e'a & \text{ the seeds} \\
 ba'sa'a & \text{ the lizards}
\end{align*}

pronoun plus noun:

\begin{align*}
 \emptyset & \text{ child} \\
 wi & \text{ his child}
\end{align*}

noun plus noun:

\begin{align*}
 a'n & \text{ personal name} \\
 a'n & \text{ Atim's child}
\end{align*}

noun plus adjective:

\begin{align*}
 f'i & \text{ small} \\
 ba & \text{ a small lizard}
\end{align*}

subject plus verb:

\begin{align*}
 m'i & \text{ emph. gave} \\
 n'e & \text{ gave}
\end{align*}

verb plus object:

\begin{align*}
 na & \text{ cow} \\
 wa' & \text{ he gave a cow}
\end{align*}

Low-Tone Spread changes a high tone to rising after a low tone regardless of the internal syllabic (moraic) structure of the first (4a) or the second (4b) syllable.
(4) a. ma$ mother ma$ fi&˘k small mother
 ba$ lizard ba$ f i&˘k small lizard
 na$˘ back na$˘ f i&˘k small back
 wa$ ma$˘ he helped wa$ ma$˘ mi&˘ he helped me emph.

b. za@ millet wa$ za& his millet
 zu@ head wa$ zu& his head
 na$˘ cow wa$ na&˘ cow
 mi$ ma$˘ emph. helped f i$ ma$˘ you helped

Mid tones neither initiate nor undergo the process.

(5) nu$m grind nu$m za$ grind millet imper.
 la$m meat wa$ la$m his meat

Rising Tone Absorption, the second general process of Buli tonology,
simplifies a rising tone (whose source is always an underlying high tone that hasecome rising by Low-Tone-Spread) to low when followed by a high tone.
Absorption applies in the same range of contexts as Low Tone Spread. Some
word-internal examples appear in (6).
(6) naḥmu
 cow def.
 waḥaḥmu
 his cow

niʿla
 cows
 waḥ iʿla
 his cows

In *waḥniʿla* his cows’ the low of *waḥ* spreads to the first syllable of *niʿla* to create a rise. In *waḥnaʿmu* his cow’ the low of *waḥ* spreads to the first syllable of *naʿmu* to create a rising tone / *waḥnaʿmu* which is then simplified to low by the Absorption process that deletes its high component. Absorption applies regularly in the phrasal phonology as well. (When followed by an adjective many nouns such as *bi:k* take a shortened allomorph).

(7) biʿk
 child
 biʿf iʿk
 a small child

waḥbiʿk
 his child
 waḥbiʿf iʿk
 his small child

biʿma
 good child
 waḥ iʿma
 his good child

miʿmaḥaβwa
 emph. blamed the chief

miʿmaḥbiʿka
 emph. blamed the child

βmaḥaβva
 blamed the chief

βmaḥbiʿka
 blamed the child
wa$ Nma$ mi& na$˘b he blamed my emph. chief

wa$ Nma$ mi$ bi@˘k he blamed my emph. child

Rising Tone Absorption can be expressed as the rule in (8a) that deletes the H portion of a LH sequence on a single syllable when followed by a high tone syllable. The alternative autosegmental delinking formulation in (8b) would require the grammar to include a preceding process that fuses adjacent high tones. Since there is no evidence for this fusion process in Buli, we prefer the formulation in (8a).

\[
\begin{array}{c|c}
\text{a.} & \text{b.} \\
\hline
\text{\(L\)} & \text{\(L\)} \\
\text{\(H\)} & \text{\(H\)} \\
\end{array}
\]

Since all rising tones originate from Low Tone Spread, Rising Tone Absorption is intrinsically ordered after it.

(9)
walbi\text{f} il\text{k} underlying

walbi\text{f} il\text{k} Low Tone Spread

walbi\text{f} il\text{k} Rising Tone Absorption

‘his small child’
The processes of Low Tone Spread and Rising Tone Absorption do not iterate. Only the first H in a LHHH sequence changes to L.

\[(10)\]

biša@Na@ children pl. definite
waš biša@Na@ his children def.
bi˘ka@ child def.
fi˘ka@ small def.
bi˘fı˘ka@ small child def.
waš bi˘ka@ his child def.
waš bi˘fı˘ka@ his small child def.
mı˘bi˘ka@ my emph. child def.
waš mašı˘ni˘bi˘ka@ he blamed my emph. child def.

The failure of the processes to iterate creates a rule opacity (Kiparsky 1971): only an underlying LH sequence becomes LR (R = rising)—a LH sequence resulting from Rising-Tone Absorption does not. This opacity is expected if the processes are expressed as ordered rules. Since both Low Tone Spread and Rising Tone Absorption apply word-internally as well as at the level of the phrase, the rule opacity cannot be circumvented by assigning the processes to
different components of the grammar such as Lexical and Post-lexical (Kiparsky 1982).

As a result of Low Tone Spread and Rising Tone Absorption, Buli has two contrasting pitch ascensions on succeeding syllables: Low plus High and Low plus Rising. We investigate the phonetic implementation of this contrast in section 9.

4. Epenthesis

The Low Tone Spread and Rising Tone Absorption processes interact in an interesting way with a vowel-zero alternation prevalent in Buli. We treat this alternation as epenthesis; see Akanlig-Pare (to appear) for further discussion. Examine the paradigms for ‘person’ below. In (11a,b) we see /nûr/ ‘person’ with the optional epenthesis. Epenthesis is more common at slower speech tempi. In (11c,d) these forms are preceded by the possessive wà ‘his’ that spreads its low tone to the following stem.

(11) a. nûũ person nûũbaŋ pl.
 nûũvaŋ def. nûũmaŋ def. pl.

b. nûũũ person nûũbaŋ pl.
 nûũũvaŋ def. nûũũmaŋ pl. def.
The epenthetic vowel is a high vowel that is typically front but may agree in rounding and backness with the preceding vowel. It generally copies the tone of the preceding syllable. However, there is one complication in its interaction with the tonal spreading and absorption processes that is evident in the paradigms of (11c,d). When followed by a high tone syllable both the stem vowel and the inserted vowel appear as low: \(\text{wa} \text{n} \text{u} \text{u} \text{w} \text{a} \text{a} \text{a} \) \(\text{wa} \text{n} \text{u} \text{u} \text{u} \text{n} \text{u} \text{a} \text{a} \). This suggests that epenthesis follows Low Tone Spread and Rising Tone Absorption. The epenthetic vowel takes the tone of the preceding syllable.

(12) \(\text{wa} \text{n} \text{u} \text{u} \text{w} \text{a} \) underlying
 \(\text{wa} \text{n} \text{u} \text{u} \text{w} \text{a} \) Low Tone Spread
 \(\text{wa} \text{n} \text{u} \text{u} \text{w} \text{a} \) Rising Tone Absorption
 \(\text{wa} \text{n} \text{u} \text{u} \text{w} \text{a} \) Epenthesis and Tone Copy
The problem with this solution is that we appear to be unable to account for the cases where the epenthetic vowel is prepausal (walnur) or precedes a low (wa) nuhula). Here the inserted vowel shows the underlying high tone of the stem vowel. If this high absorbs the H component of the preceding rise then epenthesis must apparently precede Rising Tone Absorption—contrary to the ordering established in (12).

(13) walnu
 walnu Low Tone Spread
 walnu Epenthtesis and Tone Copy
 walnu Rising Tone Absorption

In order to resolve this dilemma we suggest that after the Low Tone Spreading process creates a rising tone, the H component of the rise tone lodges on the second mora of the syllable that is projected from the coda consonant. Rising Tone Absorption will delete this high tone when the following syllable bears a H. But if the following syllable bears a L or if there is no following syllable then Rising Tone Absorption fails to apply. When epentheses occurs this coda consonant becomes the onset of the epenthetic syllable and supplies the tone for this syllable. If we assume that both moras of a Buli CVC syllable are associated with the tone of the syllable by a kind of inheritance or secondary
association (Pierrehumbert and Beckman 1988), as shown in (14), then the epenthetic syllable of nūrū can acquire its high tone via resyllabification as well.

(14)

The derivations in (15) illustrate our proposed solution.

(15)
The key step in the derivation is at Epenthesis. The mora associated with the coda consonant [r] is reassigned to the epenthetic syllable and drags its tonal association along with it.

Functionally speaking, the epenthetic syllable wants to be as unobtrusive as possible, presumably because its input source (correspondent) is zero. Promoting the tone of the resyllabified onset is perhaps the perceptually minimal modification of the input that obtains a tone for the emergent syllable.

5. Tonal Correspondences

Buli is unusual among Gur languages in having three levels of tonal contrast and in lacking a downstep. Most other Gur languages we are familiar with--Dagaare (Somé 1995, Bodomo 1997, Anttila and Bodomo 2002), Dagbani (Hyman 1993), Konni (Cahill 1999), Lama (Ourso 1989), and Moore (Kenstowicz, Nikiema, and Ourso 1988)--contrast just high and low tones. But they have extensive downstep. All but Konni also have a rule spreading high tones to a
following low tone syllable that produces a downstep. This process is absent in Buli as well.\(^2\)

To illustrate, in (16) we cite data from Moore (Kenstowicz, Nikiema, and Ourso 1988). Simple nouns fall into three tonal classes: L+H, H+L, and H+H. Conspicuously absent is the L+L pattern.

\[(16) \quad \begin{array}{ccc}
\text{sg.} & \text{pl.} & \text{meaning} \\
L-H & \text{kòr-gó} & \text{kòr-dó} & \text{‘sack’} \\
& \text{kè-ːgá} & \text{kè-ː-sé} & \text{‘green’} \\
H-L & \text{wób-gò} & \text{wób-dó} & \text{‘elephant’} \\
& \text{sá-ːgá} & \text{sá-ː-sè} & \text{‘broom’} \\
H-H & \text{mó-ːgó} & \text{mó-ː-dó} & \text{‘straw’} \\
& \text{bá-ːgá} & \text{bá-ː-sé} & \text{‘dog’}
\end{array} \]

The tone of the noun class suffix is polar with respect to the stem in the L+H and H+L patterns. But what about the H+H pattern? The key to the proper analysis of these data lies in the following fact: when modified by an adjective, the noun loses its noun class suffix. The root tone of L+H and H+L nouns is stable in this context while the root tone of H+H nouns systematically shifts to L.

\(^2\) Typologically this state of affairs could be described in the Optimality Theory Framework by differential ranking of markedness constraints prohibiting floating and contour tones with faithfulness constraints requiring input tones to appear in the output.
Kenstowicz, Nikiema, Ourso (1988) propose that the underlying tonal contrast in Moore is a three-way H vs. L vs. Ø opposition. The noun class suffix is underlying H. It dissimilates with a preceding root H by the OCP (tonal polarity). Toneless roots such as bá:-gá ‘dog’ copy the tone of the suffix. In the noun+adjective construction when the noun class suffix of the head noun is suppressed, the toneless root is assigned a default low tone. The derivation in (18) illustrates the analysis.

(18) kòr-gó sá:-ga@ ba:-gá ba bé-dá underlying
 inappl. sá:-gà inappl. ba bé-dà Polarity
 inappl. inappl. bá:-gá inappl. Tone Copy
 inappl. inappl. inappl. bá:-gà Default L
 kòr-gó sá:-gà bá:-gá bá bé-dà output
 ‘sack’ ‘broom’ ‘dog’ ‘big dogs’

The Moore paradigms in (19) illustrate the rule spreading a H tone to a following L tone syllable.

(19) kò sá:-gà ‘give a broom’
kò kòr-gó 'give a sack'
zá sá:- gà 'bring a broom'
zá kó-r-g!ó 'bring a sack'

Since Moore lacks falling tones the underlying low tone delinks to create a downstep. The derivation of zá kór-g!ó 'bring a sack' is illustrated in (20).

(20) za kor-go -> za kor-go -> za kor-go
 | | | | / | |
 | / |
 H L H H L H

The High Tone Spread process in Moore is restricted to apply across word boundaries. In Dagbani (Hyman 1993) the rule also applies word-internally so that underlying H+L nouns surface as H+H!. They contrast with Ø +H -> H+H nouns by downstepping a H that begins the next word.

With this background we return in (21) to Buli where we collect some cognate nouns from Buli and Dagaare (data from Bodomo 1997). Dagaare shows traces of the tonal polarity that is more apparent on the surface in Moore.

As in Moore, there are three principal tonal patterns on Dagaare nouns: H+L, L+H, and H+H.

(21) Dagaare Buli

 H+L H
 yiɓɓɓɓ yeɓɓɓɓ house
nĩŋ | nuŋ | person
ko̱lo̱ | kol | mahogany
zuŋ | zuŋ | head
nuŋ | nĩŋ | hand
biŋ | biŋ | seed
nũũ | nuĩĩ | chicken
kyũũ | ciŋk | month, moon
mũũ | miŋk | rope
ũaũ | ũbaŋ | hide, book
kaŋ | kpaŋm | oil
nawũũ | naŋb | cow
wawũũ | waŋb | snake
kpwũũ | kpoŋ | guinea fowl

L+H | L
| L

tũũ | tiŋb | tree
diŋ | doŋ | room
duũũ | deŋbũὺdwoŋ pl. | piŋ
| dũũ | duŋb | fruit sp.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>wi₅_wu₄</td>
<td>horse</td>
</tr>
<tr>
<td>ku₃_ku₃</td>
<td>hoe</td>
</tr>
<tr>
<td>b associative</td>
<td>lizard</td>
</tr>
<tr>
<td>ti₄</td>
<td>medicine</td>
</tr>
<tr>
<td>bi₃</td>
<td>milk</td>
</tr>
<tr>
<td>zi₃</td>
<td>blood</td>
</tr>
<tr>
<td>t associative</td>
<td>ear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>H+H M</td>
<td>1</td>
</tr>
<tr>
<td>d₃_d₃</td>
<td>man, male</td>
</tr>
<tr>
<td>b associative</td>
<td>boat</td>
</tr>
<tr>
<td>p associative</td>
<td>shell, tree bark</td>
</tr>
<tr>
<td>va u associative</td>
<td>field rubbish</td>
</tr>
<tr>
<td>p associative</td>
<td>ten</td>
</tr>
<tr>
<td>p associative</td>
<td>woman, wife</td>
</tr>
<tr>
<td>t associative</td>
<td>town, land</td>
</tr>
<tr>
<td>nyuo</td>
<td>nose</td>
</tr>
<tr>
<td>baᵣᵣᵣ</td>
<td>dog</td>
</tr>
<tr>
<td>k associative</td>
<td>bone</td>
</tr>
</tbody>
</table>
It is evident that there is a systematic correspondence between Dagaare and Buli: H+L in Dagaare corresponds to H in Buli; L+H in Dagaare corresponds to L in Buli; and H+H in Dagaare corresponds to M in Buli. Buli has lost all trace of the suffixal tone as well as suffered severe segmental erosion of the noun class suffixes. When another vowel appears (as in nûrû ‘person’) it is a high vowel that typically harmonizes with the preceding vowel and copies its tone in the manner discussed earlier.

Several explanations are possible for the H+H ≈ M correspondence between Dagaare and Buli. One states that with the erosion of the noun class suffixes and the general prohibition against floating tones, the tonal specification for Buli nouns depended solely on the root tone. Since the root tone in Dagaare H+H nouns derives from the tone of the noun class suffix, the Buli root would have become deprived of a tone and have to seek its tonal specification from another source. The most plausible source is the default rule that inserted a low tone. But in order to maintain the underlying three-way H vs. L vs. Ø contrast,
the default rule was modified to insert a mid tone instead of low. (22) outlines this scenario.

(22) CVC + V CVC + V CVC + V
H H L H H

CVC + V
H L L

loss of final V and tone

inappl. inappl. CVC default mid

M

The major problem with this analysis is that it cannot explain why the default M did not also appear in the noun-modifier construction where the noun shows up as a bare root. In present-day Buli the mid tone nouns have a low in this construction—the tone that they must have had all along. The data in (23) illustrate.

(23) kpaŋ oil kpaŋ hâN nice oil
 tiŋ medicine tiŋ hâN nice medicine
 toŋ bow toŋ naŋ nice bow
 baŋ banile baŋ f iNk small banile
 muŋ straw muŋ hâN nice straw
 toŋ bow toŋ f iNk small bow
A plausible alternative explanation appeals to phonetics. In numerous
tonal languages including Hausa (Maddieson 1977), Yoruba (Laniran 1992) and
Mandarin (Xu 1993), a high tone is implemented at a higher Fo value before a
low tone than in other contexts. Suppose that this phonetic process operated in
the earlier history of Buli. The H of a H+L noun would be implemented at a
higher F0 value that the tone of the H+H nouns. Upon the erosion of the vowel
of the noun-class suffix and loss of suffixal tone, suppose that the higher F0 of
the erstwhile H+L nouns is recategorized as underlying. The result is a three-
way tonal contrast. (24) sketches this historical scenario.

(24)

/H+L/ \[\sim \] /H+H/ \[- - \] /L+H/ \[\sim - \] before vowel deletion

/H/ \[\sim \] /H/ \[- \] /L/ \[\sim \] after vowel deletion

/H/ \[\sim \] /M/ \[- \] /L/ \[\sim \] recategorization

If the mid tone arose from the phonologization process sketched in (24) rather
than from a modification of the default rule, then there is no reason to expect a
mid to appear on the bare root in the modifier construction of (23). The low tone
appearing there in the contemporary language will have to be the product of a
systematic but synchronically arbitrary rule changing mid tone to low in this
construction.
As far as the relationship between Konni (Cahill 1999) and Buli is concerned, we find a systematic correspondence between high tone roots in the two languages. But Buli mid and low tone roots turn up as low in Konni. Konni has thus largely merged the former three-way H vs. L vs. Ø Gur distinction in root tone into a binary H vs. L opposition. Cahill finds that the majority of Konni nouns in their citation form end in a velar nasal with a floating high tone that docks to the final syllable of the stem. The tone of the plural suffix is polar to the root tone in Konni. In Buli the plural suffix –e that appears on nouns in the –ri class copies the tone of the root while the –a plural is underlyingly low and changes to mid after a mid tone.

(25)

<table>
<thead>
<tr>
<th>Konni</th>
<th>Buli</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>singular plural</td>
<td>singular plural</td>
</tr>
<tr>
<td>tu@N tu@o$</td>
<td>tu@ri@ tu@e@ bean</td>
</tr>
<tr>
<td>wi@N wi@e$</td>
<td>wi@ri@ wi@e@ face mark</td>
</tr>
<tr>
<td>nI@˘N nI@e$</td>
<td>ni@ri@ ni@e@ grindinig stone</td>
</tr>
<tr>
<td>dI@˘N dI@e$</td>
<td>di@ri@ di@e@ forehead</td>
</tr>
<tr>
<td>mU@gU@N mU@ga$</td>
<td>mo@gi@ mo@ga$ river</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>du@N du@ne$</td>
<td>du@u@ du@a@ knee</td>
</tr>
</tbody>
</table>
Konni shows traces of the former Gur ternary tonal distinction. Cahill reports a score of disyllabic roots with a LH tonal contour have distinctive behavior in the Konni associative construction that reflects their earlier toneless status. The majority of Konni LH nouns show an internal downstep in the associative due to a rule that docks a floating H tone to the head of the phrase. The paradigms below illustrate.

(26) t ñsI @ trees pl. ha$˘gI@n t ñsI @ bushes’ trees from / ha$˘gI@n t ñsI @
da@ stick
b,Uawa@ da@ the child’s stick from / b,Uawa@ da@ /

But there are some twenty disyllabic LH nouns that fail to produce a downstep in the associative. Cahill analyzes them as underlying /ØH/ with Ø replaced by a default low tone in the isolation form. In the few cases where we have been able to find cognates for these nouns in Buli, the roots have a mid tone that corroborates their toneless ancestry.

(27) kç$ba@ bones (cf. Buli ko˘bi#ko#ba#pl.

kpa@ kç$ba@ guinea fowl’s kpo@ ko$ba@

bones

hç$gU@ wife (cf. Buli po#k, po#ba#pl.

da$wa@ hç@gU$ husband’s wife cho#ba#po#

cho#roa# po#k husband

n$ zU$a@ chU@rU$ my friend’s n$ tua#cho#ba#

husband
But a significant number of Konni LH nouns with a M correspondent in Buli do show an internal downstep in the associative, suggesting that they have been reanalyzed from /ØH/ to /LH/, presumably on the basis of the isolation form.

(28)

<table>
<thead>
<tr>
<th>Konni</th>
<th>Buli</th>
</tr>
</thead>
<tbody>
<tr>
<td>singular</td>
<td>plural</td>
</tr>
<tr>
<td>saɓɓ</td>
<td>saɓɓ</td>
</tr>
<tr>
<td>saɓɓ def.</td>
<td>saɓɓu</td>
</tr>
<tr>
<td>hɓɓ-waɓɓɓɓ ‘woman’s porridge’ nuɓɓaɓɓɓɓ</td>
<td></td>
</tr>
<tr>
<td>chiaɓ</td>
<td>chaɓaɓ</td>
</tr>
<tr>
<td>kɓɓaɓɓ ‘bowl’</td>
<td>kuɓɓaɓ</td>
</tr>
<tr>
<td>kɓɓaɓɓ chiaɓ ‘bowl’s bottom’ kuɓɓaɓɓiaɓ</td>
<td></td>
</tr>
<tr>
<td>jɓɓɓ</td>
<td>jɓɓɓɓ</td>
</tr>
<tr>
<td>bɓɓɓ ‘child’</td>
<td>bɓɓ</td>
</tr>
<tr>
<td>bɓɓɓɓɓɓ ‘child’s knife’ bɓɓɓɓɓɓ</td>
<td></td>
</tr>
</tbody>
</table>

One final comparative remark. As we shall see in section 7, Buli has lost lexical tonal contrasts in the verb. However, various nominalizations of the
verb exhibit lexical contrasts. Although much more study is required, a preliminary survey suggests that the contrasting tones in Buli nominalizations correspond to the verbal tone in Dagaare.³

(29)

Buli	Nominal	Dagaare
daŋ | d iŋk | daŋa | daŋ buy, sale
miŋ | miŋk | miŋh | miŋ weave, rope
kiŋ | kiŋk | kiŋh | kyiŋi forbid, taboo
zuŋ | zuŋh | zuŋ | steal, theft

6. Nominal Inflection

Nouns in Buli appear in five singular-plural pairs that form a noun class system marked by suffixes. There is no agreement with modifiers, which have their own inherent noun class specification. In many cases the noun stems have fused in various ways with the suffixes creating considerable disparity between the singular and plural. In addition, each noun occurs in a definite form marked by a suffix that is high in tone. Below we illustrate each of the noun classes. We follow the numbering in Kröger (1992).

³Thanks to Adams Bodomo for supplying us with the Dagaare cognates. Cahill (1999) makes a similar point for Konni.
<table>
<thead>
<tr>
<th></th>
<th>class I</th>
<th>sg.</th>
<th>pl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>indef.</td>
<td>bi˘k</td>
<td>bi˘ka˘</td>
<td>child</td>
</tr>
<tr>
<td>def.</td>
<td>bi˘ka˘</td>
<td>bi˘ka˘a˘</td>
<td></td>
</tr>
<tr>
<td>pronoun</td>
<td>wa˘</td>
<td>ba˘</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>indef.</th>
<th>po˘l</th>
<th>po˘lba˘</th>
<th>wife</th>
</tr>
</thead>
<tbody>
<tr>
<td>def.</td>
<td>po˘lva˘</td>
<td>po˘lma˘</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pronoun</td>
<td>wa˘</td>
<td>ba˘</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>indef.</th>
<th>na˘b</th>
<th>na˘bi˘ha˘</th>
<th>chief</th>
</tr>
</thead>
<tbody>
<tr>
<td>def.</td>
<td>na˘va˘</td>
<td>na˘bi˘ha˘a˘</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pronoun</td>
<td>wa˘</td>
<td>ba˘</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>class II</th>
<th>sg.</th>
<th>pl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>indef.</td>
<td>ye˘˘l</td>
<td>ye˘˘l</td>
<td>house</td>
</tr>
<tr>
<td>def.</td>
<td>ye˘˘lia˘</td>
<td>ye˘˘lia˘</td>
<td></td>
</tr>
<tr>
<td>pronoun</td>
<td>d i˘</td>
<td>i˘a˘</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>indef.</th>
<th>tu˘˘l</th>
<th>t˘˘e˘</th>
<th>ear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tuũni</td>
<td>t"e[á]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>pronoun</td>
<td>d i˘</td>
<td>a˘</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>beh</th>
<th>a˘</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>indef.</td>
<td>beh</td>
<td>a˘</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>be˘i</th>
<th>a˘</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>def.</td>
<td>be˘i</td>
<td>a˘</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>di</th>
<th>a˘</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pronoun</td>
<td>di</td>
<td>a˘</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ci˘k</th>
<th>a˘</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>class III</td>
<td>sg</td>
<td>pl.</td>
<td></td>
</tr>
<tr>
<td>indef.</td>
<td>ci˘k</td>
<td>a˘</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>moon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ci˘ka</th>
<th>a˘</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>def.</td>
<td>ci˘ka</td>
<td>a˘</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ka</th>
<th>si</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pronoun</td>
<td>ka</td>
<td>si</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ba</th>
<th>ba˘sa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ban˘le</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ba˘ka</th>
<th>ba˘sa˘</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ba˘sa˘</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ka</th>
<th>si</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ba</th>
<th>ba˘sa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lizard</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ba˘ka</th>
<th>ba˘sa˘</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ba˘sa˘</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ka</th>
<th>si</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class IV</td>
<td>Sg.</td>
<td>Pl.</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Indef.</td>
<td>kpọ</td>
<td>kpi(\hat{\alpha})</td>
<td>Guinea fowl</td>
</tr>
<tr>
<td>Def.</td>
<td>kpọkụ</td>
<td>kpi(\hat{\alpha})</td>
<td></td>
</tr>
<tr>
<td>Pronoun</td>
<td>kụ</td>
<td>əạ</td>
<td></td>
</tr>
</tbody>
</table>

Indef.	bụḳ	ḅ′̂ọ	Boat
Def.	bụkụ	ḅ′̂ọạ	
Pronoun	kụ	əạ	

Indef.	dọ̄	ḍi\(\hat{\alpha}\)	Room
Def.	dọ̄kụ	ḍi\(\hat{\alpha}\)	
Pronoun	kụ	əạ	

<table>
<thead>
<tr>
<th>Class V</th>
<th>Sg.</th>
<th>Pl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indef.</td>
<td>naiḅ</td>
<td>ni(\hat{\alpha})</td>
</tr>
<tr>
<td>Def.</td>
<td>naiḅụ</td>
<td>ni(\hat{\alpha})</td>
</tr>
<tr>
<td>Pronoun</td>
<td>bụ̄</td>
<td>əạ</td>
</tr>
</tbody>
</table>

| Indef. | tọ̣ | t i\(\hat{\alpha}\) | Bow |
|----------|-----------|---------|
Several generalizations can be made about the tonology of the nominal inflection. The plural suffix typically terminates in -a with a low tone. It is raised to mid after a mid tone: cf. baŋsa‘lizards’ vs. baŋsa‘bangles’. It is also raised to high when followed by the definite suffix –a and preceded by a high toned root: cf. biŋsa‘children’, biŋsa‘def. In other words, the tone of this suffix raises to high between high tones.\footnote{A reflex of this process also appears in Konni (Cahill 1999) where a HLH tonal sequence is realized as HHH: ¯U@ra‘chest pl., ¯U@ra@ha@chest pl. def.’}

We formulate these minor rules in (31a). The derivations in (31b) show that they both must precede the general Low Tone Spread rule.

\begin{align*}
(31) \quad a. \quad & L \rightarrow M / M + ___ \\
& L \rightarrow H / H + ___ + H
\end{align*}
Finally, all of the pronouns are low in tone. The only exceptions are the emphatic forms of the first and second person singular, which have a high tone. The nonemphatic form of the first person singular pronoun is a syllabic nasal with low tone that assimilates the point of articulation of a following consonant: \(n\ddot{a}@\) 'I laughed'. When it precedes a vowel the two syllables contract into a single syllable whose onset is \([m]\) and whose nucleus is a long vowel composed of the mora of the underlying syllabic /\(\ddot{m}\)/ and the mora of the following vowel: /\(\ddot{m}a@\ddot{n}\ddot{a}@\ddot{w}@/ \(\rightarrow ma@\ddot{n}\ddot{a}@\ddot{w}@\) 'I hit him'. In direct object position a nonemphatic pronoun is cliticized to the preceding verb. Pronouns of the shape \(Ci\) such as the first person singular pronoun /\(mi/\) reduce their vowel to schwa when cliticized.

\[
\text{(32) } \begin{array}{ccc}
\text{s\(\ddot{u}\))} & \text{pl.} & \text{emphatic} \\
\text{m\(\ddot{u}\))} & \text{ti\(\ddot{u}\))} & \text{mi\(\ddot{u}\))} \\
\text{first person}
\end{array}
\]
The paradigms below illustrate the tonal effect of the pronouns on a following noun. A low tone spreads to a following high creating a rising tone that simplifies to low before a high by the absorption process.

(33) bi˘k child m˘bi˘k my child
 bi˘sa˘ pl. m˘bi˘sa˘ pl.
 bi˘ka˘ def. m˘bi˘ka˘ my child def.
 bi˘sa˘a˘ def. pl. m˘bi˘sa˘a˘ my child def. pl.

 na˘b cow na˘hu˘ cow def.
 n˘ha˘b my cow n˘ha˘hu˘ my cow def.
 f i˘ha˘b your cow f i˘ha˘hu˘ your cow def.
 wa˘ha˘b his cow wa˘ha˘hu˘ his cow def.
7. Verbal Tone

While tone is lexically contrastive in nouns, adjectives and particles, there is no lexical contrast in verbs. Verbs display a considerable variety of tonal patterns depending on tense and aspect as well as the person of the subject. Cahill (1999) documents a similar state of affairs in Konni. In what follows we present the tonal patterns for the major inflectional categories. We note the major generalizations. After the data have been introduced and tabulated, we turn to a tentative analysis.
7.1 Perfect

In (34) we give paradigms for the verbs /la/ ‘laugh’ and /nag/ ‘hit’. The latter has the optional epenthetic vowel [i]. It is transitive; we show it also when followed by the object suffix wa 'him'.

(34) ňǎ ̌lǎuďhed ̌tǐǎ ̌we ̌lǎuďhed

f ǐǎ you ̌lǎuďhed ̌nǐǎ you pl. ̌lǎuďhed

wǎǎ he ̌lǎuďhed ̌bǎǎ they ̌lǎuďhed

ňhǎǐ ̌hit ̌tǐhǎǐ ̌we ̌hit

f ǐhǎǐ you ̌hit ̌nǐhǎǐ you pl. ̌hit

wǎhǎǐ he ̌hit ̌bǎhǎǐ they ̌hit

ňhǎǐwǎ ̌hit ̌tǐhǎǐwǎ ̌we ̌hit ̌him

f ǐhǎǐwǎ you ̌hit ̌him ̌nǐhǎǐwǎ you pl. ̌hit ̌him

wǎhǎǐwǎ he ̌hit ̌him ̌bǎhǎǐwǎ they ̌hit ̌him

It is apparent that in the third person the verb has low tone while in the first and second it has high tone. The processes of Low Tone Spread and Rising Tone Absorption then derive the surface forms: /ňǎ/ -> ňlǎ and /ňhǎǐ/ -> ň
Anticipating the analysis to be proposed later, let us refer to this tonal alternation between the first and second versus third person as “agreement”. In the transitive verbs the object pronoun suffix appears with a low tone after a high tone root (i.e. in the first and second person) and with a mid tone after the low tone of the third person.\(^5\)

The corresponding negative form of the perfect is marked by the particle ãn (35). It is associated with an underlying H on the following verb. Any object suffix is L. The “agreement” alternation (low in third person high in first and second) is absent in the negative. This represents a broader generalization: generally when a preverbal particle is present, it blocks this alternation.

\[
\begin{align*}
(35) & \quad \text{ání a$\$ la$\$ya$} & \text{‘Atim did not laugh’ (yà is a completive particle)} \\
& \quad \text{mi$\$ la$\$ya$} & \text{‘I (emphatic) did not laugh’} \\
& \quad \text{ma$\$ la$\$ya$} & \text{‘I did not laugh’} \\
& \quad \text{ání a$\$ na$\$i$\$wa$} & \text{Atim did not hit him’} \\
& \quad \text{mi$\$ na$\$i$\$wa$} & \text{‘I (emphatic) did not hit him’} \\
& \quad \text{ma$\$ na$\$i$\$wa$} & \text{‘I did not hit him’}
\end{align*}
\]

\(^5\) In Konni (Cahill 1999:440) we find the cognate paradigm below for the verb /si/ ‘bathe’ in the perfective. There is a low in the third person and a H + floating L that downsteps the completive particle yá in the first and second person. The Konni and Buli paradigms thus appear to be identical at an abstract level: HL in first and second person and L in third.

\[
\begin{align*}
ná$\$si$\$ya$ & \text{I bathed} & tís$\$si$\$ya$ & \text{we bathed} \\
si$\$ya$ & \text{you bathed} & ní$\$si$\$ya$ & \text{you pl. bathed} \\
u$\$si$\$ya$ & \text{he, she bathed} & ba$\$si$\$ya$ & \text{they bathed}
\end{align*}
\]
7.2 Present

The present tense is marked by the preverbal particle à. It has an habitual sense. The following verb is mid in tone except when it is suffixed with an object pronoun. In this case the verb has an underlying high tone and the object suffix a low tone. The corresponding negatives are marked by kàn; the verb is mid unless it carries an object suffix, in which case the high-low contour appears.

(36)

\begin{align*}
\text{aṭỳ̂ m à a̱} & \quad \text{‘Atim laughs’} \\
\text{mì̀ kà̱ a̱} & \quad \text{‘I emph. laugh’} \\
\text{wà kà̱ a̱} & \quad \text{‘he laughs’} \\
\text{aṭỳ̂ m kà̱ là̱} & \quad \text{‘Atim does not laugh’} \\
\text{mì̀ kà̱ là̱} & \quad \text{‘I emph. do not laugh’} \\
\text{wà kà̱ là̱} & \quad \text{‘he does not laugh’} \\
\text{aṭỳ̂ m à hà ḏa̱ b} & \quad \text{‘Atim hits a cow’} \\
\text{mì̀ hà ḏa̱ b} & \quad \text{‘I emph. hit a cow’} \\
\text{wà hà ḏa̱ b} & \quad \text{‘he hits a cow’}
\end{align*}
7.3 Imperative

The imperative is characterized by a mid tone on the verb and the object suffix. In the negative imperative the negator is *kán* with a low tone on the following verb and a mid on any object suffix. The negator has an emphatic sense: ‘do not laugh, hit him’.

(37)

\[\begin{align*}
\text{la\ddot{a}} & \quad \text{‘laugh!’} \\
\text{na\ddot{i}wa\ddot{a}} & \quad \text{‘hit him!’} \\
\text{ka\ddot{a} la\ddot{a}} & \quad \text{‘do not laugh!’} \\
\text{ka\ddot{a} na\ddot{i}wa\ddot{a}} & \quad \text{‘do not hit him!’}
\end{align*} \]
Buli also has an imperative that inflects for continuous aspect. It is marked by the particle á. The following verb is mid in tone unless it bears an enclitic, in which case it is high and the clitic is low.

(38) a̱al̥ keep on laughing a̱al̥a̱a̱a̱ keep on hitting
 a̱al̥a̱a̱i̱wa̱ keep on hitting him
 ka̱a̱ a̱al̥ don’t keep on ka̱a̱a̱a̱i̱wa̱ don’t keep on hitting him

 laughing

7.4 Future

The future particle is l ı It induces a mid tone on the following verb and hence we have the same verbal tone patterns as in the imperative. There is no future negative form, the present negative being used instead.

(39) a̱a̱a̱ ıa̱ ‘Atim will laugh’
 a̱a̱a̱ ıa̱i̱wa̱‘Atim will hit him’

7.5 Stative

Stative verbs consist of a root plus a suffix –a. The verb has a mid tone.
There is an alternative inflection for the stative in which the verb bears an underlying high tone on the root in the first and second (but not the third) person. The suffix has a low tone. This form has an emphatic interpretation (41). While English distinguishes ‘I am nice’ vs. ‘I am nice’, Buli lacks this distinction.

(41) nɪ̝haːaː ‘I am nice’ tɪ̝haːaː ‘we are nice’
 f i̝həaː ‘you are nice’ nɪ̝haːaː ‘you pl. are nice’
 wa̝həaː ‘he is nice’ ba̝haːaː ‘they are nice’
 ma̝n na̝aː ‘I am not nice’ tɪ̝naː ‘we are not nice’
 fi̝nə ‘you are not nice’ nɪ̝naː ‘you pl. are not nice’
 wa̝nə ‘he is not nice’ ba̝nə ‘they are not nice’
The following chart summarizes the tone of the verbal inflection. When the suffix tone is in parentheses this means that it may be absent (as in an intransitive verb or a transitive verb whose object is not a pronominal enclitic).

<table>
<thead>
<tr>
<th></th>
<th>Affirmative</th>
<th></th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>particle</td>
<td>verb</td>
<td>suffix</td>
</tr>
<tr>
<td>perfect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>L (M)</td>
<td></td>
<td>àn</td>
</tr>
<tr>
<td>1st, 2nd</td>
<td>H (L)</td>
<td></td>
<td>àn</td>
</tr>
<tr>
<td>present</td>
<td>à M</td>
<td></td>
<td>kàn M</td>
</tr>
<tr>
<td></td>
<td>à H L</td>
<td></td>
<td>kàn H L</td>
</tr>
<tr>
<td>imperative</td>
<td>M (M)</td>
<td></td>
<td>kán L</td>
</tr>
<tr>
<td>contin.</td>
<td>á M</td>
<td></td>
<td>kán á M</td>
</tr>
<tr>
<td></td>
<td>á H L</td>
<td></td>
<td>kán á H L</td>
</tr>
<tr>
<td>future</td>
<td>lì M (M)</td>
<td></td>
<td>kàn M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kàn H L</td>
</tr>
<tr>
<td>stative</td>
<td>M M</td>
<td></td>
<td>àn M M</td>
</tr>
<tr>
<td>emphatic</td>
<td>H L</td>
<td></td>
<td>àn H L</td>
</tr>
</tbody>
</table>
7.6 Analysis

As is often the case in the analysis of inflectional morphology, the Buli data are limited and thus the analysis is considerably underdetermined by the facts. One runs the risk of drawing parallels that may later turn out to be spurious. With this caveat, we offer the following interpretation of the data that tries to impose some order on what otherwise appear to be rather arbitrary and chaotic tonal changes.

The imperative, future, and stative seem to form a system separate from the perfect and present. The verbal tone is generally mid in these inflectional categories, which we will assume to be the default tone—at least for the verbs. In the stative the appearance of the HL tonal pattern is associated with an emphatic interpretation. The association of high tone and focus or more general foregrounding pervades Buli phonology: the definite of nouns is marked by a high; the focus marker ká has a high tone; and the emphatic form of a pronoun has a high tone. For the stative, recall that the emphatic high tone does not appear when the verb is third person: cf. *f ɪnà* you are nice’ emphatic but *wà nàr* he is nice’. The HL of the stative thus has a distribution comparable to the H(L) in the perfect, which is also absent in the third person. The parallel is further strengthened by the fact that in the negative the verb is HL in the perfect regardless of the person of the subject. And the same is true
for the emphatic form of the stative. This suggests that the emphatic HL of the stative is really the agreement H(L) morpheme found in the perfect. In the affirmative form of both the perfect and the stative the agreement H(L) is absent in the third person. Cross-linguistically third person often has unmarked inflection, as opposed to first and second. Also, first and second person stand out from the background as participants in the speech act and so the agreement morpheme shares a family resemblance with the definite and focus forms.

Let us formalize these observations by postulating an agreement morpheme Agr consisting of a H+L tonal sequence. It appears in the preverbal INFL position. We postulate a rule deleting this morpheme when it immediately follows a third person [-participant] subject. The rule fails to apply in the negative because the negative morpheme intervenes between Agr and the subject. In the stative the Agr morpheme is normally absent but can be inserted when the verb is emphatic (focused).

The tense markers à and lì have a low tone. And in the perfect a low tone appears on the verb in the third person: wà là ‘he laughed’ (cf. n⁶la⁶k n⁶la⁶ ‘I laughed’). It seems reasonable to identify this low tone as an exponent of the tense morpheme. Any following suffix is mid—presumably a default tone.

Collecting all these ingredients together, we postulate the underlying structure of (43a) for the verb in Buli. The rule of (43b) deletes the Agr following a [-participant] (i.e. third person) morpheme. Rule (43c) assigns a default mid tone when the verb fails to receive a tone from the Infl node.
(43) a. Neg [Agr Tns]_{INF} \text{Verb} \\
 L \quad H+L \quad L \\

b. Agr -> \Ø / [-participant] ____

c. default: \Ø -> M \\

Let us sketch some derivations utilizing the transitive verb /\textipa{\textipa{t\textipa{a}}}ma/‘blame’. In the perfect there is no segmental spell out of the Tns node. If the subject is third person, the Agr morpheme deletes leaving just the Tns L. It associates to the verb. Any object suffix gets the default mid.

(44) morphosyntax

\begin{align*}
\text{wa}\bar{\text{a}}[H+L]_{\text{Agr}}[L]_{\text{Tns}} & \quad \text{\textipa{\textipa{t\textipa{a}}}ma-wa} & \quad \text{underlying} \\
\text{wa}\bar{\text{a}}[L]_{\text{Tns}} & \quad \text{\textipa{\textipa{t\textipa{a}}}ma-wa} & \quad \text{Agr Deletion} \\
\text{wa}\bar{\text{a}} & \quad \text{\textipa{\textipa{t\textipa{a}}}ma-wa} & \quad \text{Tone Association} \\
\text{[L]_{Tns}} & \\
\end{align*}

phonology

\begin{align*}
\text{wa}\bar{\text{a}} & \quad \text{\textipa{\textipa{t\textipa{a}}}ma-wa} & \quad \text{Default Mid} \\
\text{[L]_{Tns} M} & \\
\text{wa\textipa{\textipa{t\textipa{a}}}ma\textipa{\textipa{t\textipa{a}}}wa\bar{\text{a}}} & \quad \text{output} \\
\end{align*}

‘he blamed him’
In the first or second person of the perfect the Agr morpheme is not deleted. Under left-to-right association the Agr H associates to the verb and any object suffix receives a L.

\[(45) \text{morphosyntax}\]
\[
f \text{i} [H+L]_{\text{Agr}} [L]_{\text{Tns}} \quad \text{\textcircled{ma-wa}} \quad \text{underlying}
\]
\[
f \text{i} \text{\textcircled{ma-wa}} \quad \text{Tone Association}
\]
\[
[H+L]_{\text{Agr}} [L]_{\text{Tns}}
\]

\[
\text{phonology}
\]
\[
\text{\textcircled{f i i \text{\textcircled{ma-wa}} \quad Floating Tone Deletion}
\]
\[
\text{H} \quad \text{L}
\]
\[
\text{\textcircled{f i i \text{\textcircled{ma-wa} \quad Low Tone Spread}
\]
\]
\['\text{you blamed him}']

In the negative of the perfect the negator àn intervenes between the subject and the verb blocking deletion of the Agr H+L. This morpheme persists in the representation and maps to the verb to produce a H(L) contour.

\[(46) \text{morphosyntax}\]
\[
\text{wà\textcircled{hà} [H+L]_{\text{Agr}} [L]_{\text{Tns}} \quad \text{\textcircled{ma-wa}} \quad \text{underlying}
\]
\[
inappl. \quad \text{Agr Deletion}
\]
wa$h\bar{u} \quad \bar{\text{ma}}\text{-}wa \quad \text{Tone Association}

\begin{align*}
& [H+L]_{\text{Agr}} [L]_{\text{Tns}} \\
\end{align*}

\textbf{phonology}

wa$h\bar{u} \quad \bar{\text{ma}}\text{-}wa \quad \text{Floating Tone Deletion}

\begin{align*}
& H \quad L \\
\end{align*}

wa$h\bar{u} \quad \bar{\text{ma}}\text{-}wa\bar{u} \quad \text{Low Tone Spread}

‘he did not blame him’

In the stative the INFL node normally deletes (or is not spelled out). The verb thus receives a default mid tone.

\begin{align*}
(47) \quad \textbf{morphosyntax} \\
& \text{f} \text{i} \text{\lbar{u}} \quad [H+L]_{\text{Agr}} [L]_{\text{Tns}} \quad \text{nal-a} \quad \text{underlyn\lbar{u}} \\
& \text{f} \text{i}\bar{\text{h}}\text{al-a} \quad \text{Infl Deletion} \\
\end{align*}

\textbf{phonology}

\begin{align*}
& \text{f} \text{i}\bar{\text{u}} \quad \text{nal\bar{u}} \quad \text{Default Mid} \\
& \text{‘you are nice’} \\
\end{align*}

But under emphasis the INFL node is retained (cf. English emphatic \textit{do}). We then derive the familiar H(L) contour.
In the future the tense node is lexicalized with \textit{li} that takes the low tone. We assume that lexicalization of the Tns node blocks association of the Agr and its H+L tones to the following verb. As a result, the verb gets default mid tone.
As in many other languages the imperative form of the verb consists of the bare stem without any Infl. Thus, only a default mid is inserted: *naŋiwa* ‘hit him’. In the negative imperative we find *kán* and low tone on the following verb: *kaŋ naŋiwa* don’t hit him’. According to the first author this form of the imperative has an emphatic sense (cf. English *do not open the door*) and is thus comparable to the emphatic stative. The emphatic sense calls for insertion of the Agr morpheme. But the H of Agr H+L associates to the negative [kan] and the L to the verb. Any object suffix receives the default mid.⁶

(50) morphosyntax

kan ðma-wa underlying

[H+L]_{Agr} kan ðma-wa Emphatic Agr Insertion

kan ðma-wa Tone Association

H L

phonology

kan ðma-wa Default Mid

H L M

kaŋ ðmawa output

‘do not blame him’

⁶ It is also conceivable that the emphatic negative particle *kán* is some amalgamation of the focus marker *ká* plus the negative *àn*.
The most puzzling tonal contrast is found in the present tense. Recall that it is marked by the tense-aspect morpheme à. This morpheme will block association of the Agr tones to the verb, which then receives default mid, just as in the future (49): mi[à]na[à]b ‘I emphatic hit a cow’. But if the verb is encliticized with an object pronoun suffix then the verb appears as HL. This suggests that the Agr node lowers onto the verb when it contains an “agreeing” object suffix. The verb will then acquire the H+L tonal contour. Agr lowering must precede Agr deletion since it applies even when the subject is third person.

(51) morphosyntax

\[
\begin{align*}
\text{wà} & \quad [\text{H+L}]_{\text{Agr}} \quad [\hat{\text{à}}]_{\text{Tns}} \quad \overset{\text{ma-wa,}}{\text{underlying}} \\
\text{wà} & \quad [\hat{\text{à}}]_{\text{Tns}} \quad [\text{H+L}]_{\text{Agr}} \quad \overset{\text{ma-wa,}}{\text{Agr Lowering}} \\
& \quad \overset{\text{inappl.}}{\text{Agr Deletion}} \\
\text{wà} & \quad \overset{\text{à}}{\text{ma-wa}} \quad \overset{\text{Tone Association}}{\text{H \quad L}}
\end{align*}
\]

phonology

\[
\text{waà\text{à}ma\text{à}waà} \quad \text{Low Tone Spreading}
\]

‘he hits him’
We are unable to explain why Agr Lowering does not occur in the future (or the third person of the perfect). Clearly more study of the complex morphosyntax of the Buli verb is required before this discrepancy can be explained.

8. Other Constructions

In this section we review the tonal patterns of the verbal inflection in several additional constructions.

8.1 Serial Verbs

The serial verb construction consists of two verbs that share an object. (See Lee 2002 for analysis of serial verbs in Buli). The shared object must appear between the two verbs. In what follows, we are interested primarily in how the serial verb inflects for tone. Our paradigms use the canonical serial verb composed of tuisi ‘push’ and lw$ansi$ ‘drop’. When combined into a serial verb, the meaning changes to ‘push down’.

The paradigm in (52) shows some serial verb constructions in the perfect tense.

(52) ntuisi$bik lw$ansi$ PUSHED DOWN A CHILD

 ntuisiba lw$ansi$ PUSHED DOWN A BANGLE
ali @n tu@niBa˘l 1"a"si˘ @n pushed down a bangle
ali @n tu@niBa˘l 1"a"si˘@N atim did not push down a bangle
wa@niBi˘k 1"a"si˘ he pushed down a child
niBu˘nva˘l"a"si˘ pushed him down
miBu˘nvi˘v"a"si˘ emph pushed him down
wa@niBii˘l"a"si˘ he pushed me emph. down
f iBu˘nvi˘l"a"si˘ you pushed me down
miBu˘niBu˘nvi˘l"a"si˘ emph did not push him down

We observe that V₁ shows the agreement alternation. It takes an underlying H when the subject is first or second person and L when it is third person. Low Tone Spread and Rising Tone Absorption apply to derive the tu@ni and tu@ni alternants. In the perfect tense V₂ is consistently low in tone. This suggests that the underlying structure of the IP in the serial construction is [Subj-Agr-Tns-V₁-Obj-Tns-V₂] with both verbs inflected for tense. The L Tns morpheme appears on V₁ in the third person when the Agr morpheme is deleted. But it is pushed aside in the first and second person by Agr H<L>.

7 The negative perfect of the serial must take the sentence final completive particle yà that imposes a mid tone on the preceding syllable.
There is one unexplained gap in the paradigm. When the verb is first or second person (and hence has the HL Agr morpheme) it cannot take a cliticized object. Instead the full form of the object must be used.
In the present each verb takes a segmentally lexicalized tense morpheme: Tns-\(V_1\), Tns-\(V_2\).

(55)

\begin{itemize}
 \item \text{a}.
 \begin{align*}
 \text{atim} & \quad \text{atim} \, \text{is pushing me down}
 \end{align*}

 \item \text{b}.
 \begin{align*}
 \text{mi@ a$ tu#si# bi˘@k} & \quad \text{emph am pushing down a child}
 \end{align*}

 \item \text{c}.
 \begin{align*}
 \text{mi@ tu@si@ bi@˘ka@} & \quad \text{emph push down the child}
 \end{align*}

 \item \text{d}.
 \begin{align*}
 \text{atim} & \quad \text{atim} \, \text{pushes me emph. down}
 \end{align*}
\end{itemize}

\(V_2\) consistently has the high toned \(\ddot{a}\) particle that is found in the imperative (38).\(^8\) The verb itself carries a default mid. When the serial verb has the progressive sense, then \(V_1\) is preceded by the low tone tense-aspect particle \(\ddot{a}\). The following verb \(V_1\) has default mid. This is what we expect since the \(\ddot{a}\) particle blocks the docking of the AGR morpheme on \(V_1\). When the serial verb has a habitual sense then \(V_1\) has no segmental preverbal particle. In this case, the H(L) agreement morpheme can appear on \(V_1\) when the subject is not third person (55c). In the third person, the AGR is deleted and so only the Tense L survives; it docks to the verb (55d).

In the imperative and future forms of the serial verb, \(V_1\) is inflected in the manner of the nonserial construction while \(V_2\) has a Tns low tone, just as in the perfect. The only complication is that in the negative future \(V_2\) must be

\(^8\) The \(\ddot{a}\) particle that precedes \(V_2\) appears with a low tone after an object that has a low tone: \text{mi@ a$ tu#si# ba$N} \, \text{emph am pushing down a lizard}. We do not understand this alternation.
preceded by the á particle that appears in the present tense. Since it occupies the Tns slot, the L tone that might otherwise be expected does not occur. As a result, the verb receives a default mid tone.

(56)

Push down a lizard!

don’t push down a lizard!

he will push down a lizard

he will not push down a child

In sum, in the serial verb construction both verbs are inflected for tense-aspect. The Tns node on V₂ is only lexicalized in the present as á. Otherwise, the Tns is reflected in the L that appears on the following verb. The Agr HL appears on V₁ (so long as the subject is not third person and the V₁ Tns node is not lexicalized). But for some unknown reason cliticization is blocked when the verb is first or second person. The L portion of the Agr HL is then pruned away.

8.2 Subordinate Clauses

As in some other languages, the relative clause in Buli has more restricted inflection than the main clause. (See Hiraiwa 2002 for analysis of the syntax of Buli relative constructions). In particular the agreement morpheme is banned
from the relative. Hence, as shown in the paradigm of (57), the verb $\text{na}$$\text{gi}$ of the relative clause does not change its tone as the person of the subject is changed (in contrast to the main clause verb). Instead, the verb of the relative clause receives the L tense marker in all forms. It triggers Low Tone Spread to create a rising tone on the particle la that terminates the relative clause. Subject relatives are introduced by the particle l and nonsubject ones by the particle t

(57)
\begin{align*}
\text{a} & \text{\{i\}n n\text{y\{i\}}b\text{i\{i\}}k\text{a\{i\}}\text{\{i\}m\{i\}ha\{i\}l\{i\}} & \text{atim saw the child that \text{\{i\}emph hit} \\
\text{a} & \text{\{i\}n n\text{y\{i\}}b\text{i\{i\}}k\text{a\{i\}}\text{\{i\}m\{i\}ha\{i\}l\{i\}} & \text{atim saw the child that \text{\{i\}hit} \\
\text{n\text{\{i\}ya\{i\}}b\text{i\{i\}}k\text{a\{i\}}\text{\{i\}h\{i\}l\{i\}}\{i\}n n\text{a\{i\}}l\{i\}l\{i\}} & \text{\text{\{i\}saw the child that atim hit}
\end{align*}

Since the agreement morpheme is banned from the relative clause, there can be no Agr Lowering that we find in the main clause of present tense verbs. We can ask what tone an object pronoun will receive in the absence of the Agr morpheme. Other things being equal, we expect a default mid to appear. This is a correct prediction, as shown by the paradigm in (58).

(58)
\begin{align*}
\text{a. } n\text{\{i\}ya\{i\}}b\text{i\{i\}}k\text{a\{i\}}\text{\{i\}i\=a\=i\\{i\}n\{i\}l\{i\}a\{i\}} & \text{\=saw the child that hit me} \\
\text{b. } n\text{\{i\}ya\{i\}}b\text{i\{i\}}k\text{a\{i\}}\text{\{i\}i\=a\=i\\{i\}n\{i\}l\{i\}a\{i\}} & \text{\=saw the child that hits them} \\
\text{c. } a\{i\}\text{\{i\}n a\=i\=h\{i\}l\{i\}a\{i\}} & \text{atim hits them}
\end{align*}
In (58a) the verb of the relative clause is in the perfect tense. Thus, the verb takes the Tns L tone and the enclitic object suffix takes default mid tone. But in (58b) the tense node is lexicalized as \(\dot{a} \). The Infl node thus has no tone to contribute to the verb, which consequently surfaces with default mid. Compare the present tense of the main clause verb in (58c). Here the Agr HL is lured onto the verb by the clitic object.

Finally, Buli has constructions in which the verb of the subordinate clause appears in a nonfinite form. (See Norris 2002 for discussion). One of these is as complement to the main clause verb \(ya\ddot{j}i \)‘want’. If a clause lacks inflection and if inflection is the source of the tone for the verb, then we expect the verb to appear in the default mid tone in this context. The paradigm in (59) shows that this expectation is confirmed.

(59) \[ma\ddot{j}a\ddot{i}(\dddot{a}g\ddot{i}) \ a\ddot{i}n \ n\dddot{a}h\dddot{a}\dddot{i}w\ddot{a} \] I want (that) atim to hit me

\[a\ddot{i}n \ a\ddot{i}ya\ddot{i}(\dddot{a}g\ddot{i}) \ n\dddot{a}h\dddot{a}\dddot{i}w\ddot{a} \] atim wants (that) me to hit him

\[ma\ddot{j}a\ddot{i}(\dddot{a}g\ddot{i}) \ a\ddot{i}n \ pa\dddot{k}u\dddot{a}\dddot{e}n\dddot{n} \] I want (that) atim to hand it [ku] over to me

8.3 Reduplication

In Buli the verb can reduplicate to denote repeated action. (See Hsiao 2002 for discussion of reduplication in Buli). In (60) we show some reduplicated verbs along with their non-reduplicated counterparts.
Atim hit me
Atim kept on hitting me
you hit him
you kept on hitting him

One possible analysis goes as follows. In third person the Agr morpheme deletes; the verb gets the L tense morpheme while the object gets default mid. The verb is then reduplicated.

(61) morphosyntax

Underlying:

<table>
<thead>
<tr>
<th>H+L</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>aṭin Agr Tns</td>
<td>[nag -m]</td>
</tr>
</tbody>
</table>

Deletion:

<table>
<thead>
<tr>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>aṭin Tns[nag -m]</td>
</tr>
</tbody>
</table>

Tone Association:

<table>
<thead>
<tr>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>nag-m</td>
</tr>
</tbody>
</table>

Reduplication:

<table>
<thead>
<tr>
<th>L</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>nag-nag-m</td>
<td>Reduplication of verb</td>
<td></td>
</tr>
</tbody>
</table>
But if reduplication follows Tone Association then the HL Agr morpheme should associate to the verb+obj first to give /nág-wà/ and then reduplicate to /nág-nág-wà/ (and eventually na@gi@na@gi@wa). But this is doubly wrong: the second half of the reduplicant has a low tone and the object has a mid tone: /nág-nág-wà/ (and eventually na@gi@na@gi@wa) you kept on hitting him’.

The other possible analysis is that the L appearing on the second half of the reduplicated verb is neither copied from the first half nor a reflex of Agr. Instead it is the L that we saw in the serial verb construction where V₂ consistently had the L tense morpheme except in the present where the á particle occurs forcing V₂ to get default mid tone unless an object enclitic occurs. In fact, this is the correct analysis as shown by the data in (62). Here the verb is reduplicated and takes two occurrences of the Tns particle. The second one licenses the HL Agr morpheme which can lower onto the verb with the encliticized object suffix.

(62) atim a@na@gi@ atim hits me habitually
 a@na@ h@a@ a@na@gi@ atim keeps on hitting me habitually
 a@na@ h@a@ a@na@gi@mi@ atim keeps on hitting me emph habitually

Thus, verbal reduplication in Buli takes place at the V’ level of the morphology (V’ = Tns+V) (cf. Inkelas & Zoll 2002) rather than copying in the phonology or

9. Phonetics

In this section we report several findings from a study of the phonetic implementation of the tonal data discussed in this paper. This study is based on the speech of a single speaker, the first author.

Buli is unusual among Gur languages in having a three-way distinction in tonal height. The minimal triple in (63) illustrates.

(63) s'yul s'yul s'yul
 ‘path’ ‘navel’ ‘fish sp.’
In citation forms the low and mid tones are quite regularly implemented at c. 100 Hz and 130 Hz, respectively, while the high tone fluctuates between 150 – 200 Hz. This might indicate that the high tone belongs to an upper register while the low and mid tones belong to a lower register. There is a modicum of phonological evidence to support this conjecture. Diachronically, there is our hypothesis that the Buli H originates from the raising (enhancement) of a H before L. Synchronously, we have seen two rules that relate low and mid tones in Buli: mid is changed to low in the noun-adjective construction and the low of the plural suffix –əNS changed to mid after a mid tone. It is true that a low tone changes to high between high tones (31a) but this could arguably reflect phonologization of an undershoot phenomenon.

As we have seen, the syllable is the tone-bearing unit in Buli. There is no underlying phonemic contrast between level and contour tones. Furthermore, the language contrasts CV, CVV, CVC, and CVVC syllable shapes. One might wonder how a tone such as a H is realized on the syllable. Can the peak be located anywhere in the syllable? Or is it achieved at some designated point such as the onset of the vowel or the right edge of the syllable? In fact, the following generalization underlies Buli tonal implementation: the tone stretches over the entire syllable rime producing a plateau. This point is evident in the pitch tracings in (64) showing the realization of a high tone on syllables of various canonical shapes. There is a rapid Fo rise in the onset and then the high tonal level is maintained with a slow decline reflecting prepausal lowering. This
plateau structure may aid in the discrimination of three tonal levels by increasing the duration over which the stimulus can be perceived.

(64)

(65) shows the transition from H to M and L. In general there is minimal anticipation in the achievement of the tonal targets on syllable rimes. The vast majority of the transition occurs in the syllable onset located between the two rimes.
Confining the F0 transitions to syllable onsets makes sense. Onsets may contain obstruent consonants, which are not optimal tone-bearing units. Making the F0 transition there allows the more hospitable (i.e. sonorant) syllable rime to host the tone. Also, Xu (1999) argues that it takes time for the relatively sluggish laryngeal articulators to implement a tone. If tonal implementation is aligned with the beginning of the syllable then the onset portion coincides with the inertia that must be overcome to approach the tonal target.

In (66) we illustrate the H≈R≈L alternation on bìːk ‘child’ produced by Low Tone Spread and Rising Tone Absorption. It is clear that in m)bìːk the low of the pronoun spreads to first part of the rime of bìːk. This is followed by a rapid rise on the second mora. It is equally clear from m)bìːk that this rise has been suppressed when a H follows. There is instead a rapid transition from the L on [biː] to the H on [ká] that takes place primarily in the onset.
It is well known from the phonetics literature that rising tones take longer to implement than falling tones (Sundberg 1979). Since Buli has syllables of various sizes we can ask if they behave differently under rising tone creation. In (67) we report the syllable rime durations for underlying high tone syllables in two prepausal contexts: (1) preceded by the high-toned emphatic pronoun mǐ ‘my’ and (2) preceded by the low-toned nonemphatic counterpart nǐ. In the former context the H is unchanged while in the latter it turns to rising by Low Tone Spread. The durations of the CVVC, CVV, and CVC syllables remain relatively stable across the two contexts. But the monomoraic CV is significantly longer. It thus appears that in the prepausal context there is an opportunity for phrase-final lengthening. The Buli speaker takes advantage of this opportunity to realize his rise more comfortably. Comparable examples in the durational disparity between rising and falling tones have been reported in
the literature. For example, Lehiste and Ivic (1986) found that short vowels with a rising tone are longer in duration than short vowels with a falling tone. Myers (to appear) reports that in Kinyarwanda the bimoraic long vowel under rising tone (H on the second mora) is significantly longer than a comparable bimoraic long vowel under a falling tone (H on the first mora). And Gandour (1977) finds diachronic changes in vowel length in Thai dialects that track the direction of contour change: short > long in syllables with rising tones and long > short in syllables with level or falling tones.

(67) CVX

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>306</td>
<td>301</td>
</tr>
<tr>
<td>st dev.</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td>N</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Min</td>
<td>210</td>
<td>236</td>
</tr>
<tr>
<td>Max</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

t-test: mean diff. 5.2, DF 10, t = 1.05, p = .3183

CV

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>109</td>
<td>159</td>
</tr>
<tr>
<td>St dev.</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>N</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Min.</td>
<td>76</td>
<td>129</td>
</tr>
<tr>
<td>Max.</td>
<td>129</td>
<td>203</td>
</tr>
</tbody>
</table>

t-test: mean diff. 49, DF 14, t = 7.63 p = < .0001

Buli has no falling tones and so we cannot test the durational requirements of a rising vs. falling contrast. However, we did measure the duration of prepausal low tone syllables after a high vs. a low tone. The former sequence requires a transition from H to L while the latter does not. In this case
neither the CV:, CVC, and CV:C syllables nor the CV syllables showed a significant durational difference in the two contexts.

(68) C`VX

<table>
<thead>
<tr>
<th></th>
<th>Post-L</th>
<th>Post-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>349</td>
<td>340</td>
</tr>
<tr>
<td>st dev.</td>
<td>39</td>
<td>50</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>min</td>
<td>300</td>
<td>276</td>
</tr>
<tr>
<td>max</td>
<td>430</td>
<td>443</td>
</tr>
</tbody>
</table>

t-test: mean diff. 8.4, DF 12, t = .640, p = .534

C`V

<table>
<thead>
<tr>
<th></th>
<th>Post-L</th>
<th>Post-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>113</td>
<td>130</td>
</tr>
<tr>
<td>st dev.</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>min</td>
<td>100</td>
<td>107</td>
</tr>
<tr>
<td>max</td>
<td>129</td>
<td>155</td>
</tr>
</tbody>
</table>

t-test: mean diff. 16.2, DF 4, t = 1.36, p = .243

9. Summary and Conclusion

The principal findings of this study of Buli tone can be summarized as follows. The language contrasts three levels of tone: high, mid, and low. Although Buli combines a vowel length contrast with an open vs. closed syllable contrast, there are no underlying complex tones. A general process spreads a low tone to a following syllable with a high tone to produce a rising tone. The rising tone simplifies to low when followed by a high-tone syllable. These processes apply
at the level of the syllable, which is the tone-bearing unit of the language. Buli differs from other Gur languages in lacking a downstep and more generally in banning floating tones. We demonstrated a systematic correspondence between high, low, and toneless roots in Dagaare and high, low, and mid roots in Buli. We suggested that the mid tone in Buli arose from phonologization of the phonetic raising of a high tone before a low. We then surveyed the tonal changes associated with the nominal and verbal inflection. The latter was shown to be unusually complex. We suggested an analysis that made crucial use of an Inflection node that comprises a H+L agreement morpheme and a L tense morpheme that lower onto the verb in various contexts. Certain loose ends of the analysis were left as tasks for future research. The paper closed with a summary of the phonetic implementations of the tonal patterns. The syllable rime is the domain of realization of tones while the onset of the syllable is a zone of F0 transition. Rising tones are consistently distinguished from highs by delay of the peak until the end of the syllable. In the case of a monomoraic CV syllable, a rising tone occasions a significant lengthening before pause.

We hope that this paper will stimulate further study of the tone of Gur languages from both descriptive as well as comparative, typological perspectives.

References

Hiraiwa, Ken and Shogo Suzuki. (2002). Relative clauses in Buli. This volume.

Hsiao, Franny. (2002). Reduplication in Buli. This volume.

Inkelas, Sharon and Cheryl Zoll. (2002). A morphological theory of reduplication. Ms. MIT.

Lee, Youngjoo. (2002). Serial verb constructions in Buli. This volume.

Myers, Scott. (To appear). Fo timing in Kinyarwanda. *Phonetica*

Norris, Rebecca. (2002). Embedded clauses in Buli. This volume.

Xu, Yi. (1999). Effects of tone and focus on the formation and alignment of Fo contours.