Workshop on Direct Compositionality
Brown University, June 2003

The Interpretation of Quantificational Structures: Evidence for the Copy Theory of Traces
Danny Fox, MIT

Introduction

(1) A girl read every book.

What is the source of Inverse Scope?

Two hypotheses:

(1') a. **Movement** (Q-Raising, Q-Lowering, Quantifying-in, see Jacobson 2002)

 [A girl read t₁] every book₁

b. **Function Composition** (Dowty, Jacobson, Steedman *passim*)

 [A-girl' ○ read'] every-book'

The debate is to some extent about the ways in which one should complicate phonology.

Illustration:

(2) A girl gave every book to John.

When extended to this sentence both hypotheses lead to the conclusion that phonology is deceitful:

(2') a. [A girl gave t₁ to John] Every book₁ (together with a Special rule of pronunciation: pronounce at the position of the trace)

b. [A-girl' ○ gave'(to-John')]every-book' (together with a Special rule of pronunciation: pronounce adjacent to the head: wrap).

Shared assumptions:

1. *every book* is interpreted as the second order predicate in (3a)
2. its argument is interpreted as the predicate that can be described (in the meta-language) by abstracting over the canonical object position, e.g. (3b) for the Inverse Scope reading of (1).

(3) a. λP₁[<₃₋₄> [book]] ⊆ P
b. λP₁. A girl read x
Claims:

A. Shared assumption (1) needs to be modified. The argument of a restrictive quantifier phrase, QP, (at least when there is Inverse Scope) is a partial function defined only for individuals that satisfy the restrictor:

\[(3'a) \quad \lambda P_e. P \subseteq \{\text{book}\}\]

\[\lambda x_e. x \text{ is a book.} \quad \text{A girl read } x\]

B. Inverse Scope is derived by Movement, and traces are copies.

\[(2'') \quad \lambda P_e. [\text{every book}]_1 \text{ to John} \quad [\text{every book}]_1\]

A “moved” QP is present at the base position as well as at the landing site. The restrictor of the QP is accessed as part of the semantic rule for the interpretation of movement (predicate abstraction).

\[\[(2'')a\] = [\text{every book is such that a girl read that book}]\]

Consequences for Direct Compositionality (DC): See Conclusions

1. The Interpretation of Chains

(4) Mary likes every boy.
\[\text{-}QR\ldots\rightarrow\]
\[[\text{every boy}]_1 \quad \text{[Mary likes [every boy]}_1\].\]

1.1. Two Syntactic Rules

Assumption: copies must be replaced with syntactic phrases that contain variables

Copy Insensitive Rule

(5) Traditional Trace Theory: \(\text{DP} \rightarrow x\)

(6) every boy A girl talked to every boy.
\(\text{every boy } \lambda x [\text{a girl talked to } x]?\)

(7) Which boy Mary visited which boy?
\(\text{which boy } \lambda x [\text{Mary visited } x]?\)

The inspiration: pronoun binding

(8) Every boy is such that a girl talked to him.
Copy Sensitive Rule (Fox 1999, 2003; Sauerland in press; Elbourne 2002):

(9) **Trace Conversion:**
 a. Variable Insertion \((\text{Det} \text{Pred} \rightarrow (\text{Det}) \ [\text{Pred} \lambda y (y=x)])\)
 b. Determiner Replacement \((\text{Det} \text{Pred} \rightarrow \text{the}) [\text{Pred} \lambda y (y=x)]\)

(10) every boy A girl talked to every boy. \(\rightarrow\)
every boy \(\lambda x [a \text{ girl talked to the boy } x]\)?

(11) Which boy Mary visited which boy? \(\rightarrow\)
which boy \(\lambda x [\text{Mary visited the boy } x]\)?
 (See Rullmann and Beck (1997))

The inspiration: binding of definite descriptions (e.g., epithets)

(12) Every boy is such that a girl talked to that boy.

1.2. Two Semantic Rules

Chomsky’s conceptual argument for the copy theory of movement

- Even if we have a syntactic rule that replaces copies with variables, we need a semantic rule that would tell us how to interpret variables, and this rule could apply directly to structures with copies.
- So, there is no need for the syntactic rule, hence no need for traces distinct from copies. (So Syntax as opposed to semantics can be totally cyclic: i.e. no need to revise the structure of A when something is “moved out of A”. There is no movement only “re-merge”.)

Copy Insensitive Rule

(13) In a structure formed by XP movement, \(\text{XP}_n[\varphi \ldots \text{XP}_n\ldots]\), the derived sister of XP, \(\varphi\), is interpreted as a function that maps an individual, \(x\), to the meaning of \(\varphi[x/n]\).
\(\varphi[x/n]\) is the result of replacing every constituent with the index \(n\) in \(\varphi\) with the DP, him\(_x\).

\[[\text{him}_x] = x. \]

Copy Sensitive Rule (compare with Elbourne 2002)

(14) In a structure formed by XP movement, \(\text{XP}_n[\varphi \ldots \text{XP}_n\ldots]\), the derived sister of XP, \(\varphi\), is interpreted as a function that maps an individual, \(x\), to the meaning of \(\varphi[x/n]\).
\(\varphi[x/n]\) is the result of replacing the head of every constituent with the index \(n\) in \(\varphi\) with the head the\(_x\).

\[[[\text{the}_x]] = \lambda P. [[\text{the}}](P \cap \lambda y. y = x) \]
I don’t know how to distinguish on empirical grounds between the syntactic and the semantic versions of Copy (In)sensitive Rules.

Goal: To present various arguments in favor of Copy Sensitive Rules (which are independent of whether the implementation is syntactic or semantic). These arguments will provide empirical support for the copy theory of traces, hence, for traces.

Chomsky’s conceptual argument suggests that the semantic version of the debate is the correct one. Nevertheless, I will stick to the syntactic version because I suspect it will be easier to follow.

The arguments:

- Condition C
- Antecedent Contained Deletion
- A constraint on Extraposition
- An argument from Focus (Sauerland 2001)
- Conservativity

2. The reason why it’s so hard to tell:

It is hard to distinguish between Copy Sensitive and Copy Insensitive rules because quantifiers in NL are conservative.

\[
Q(A,B) = Q(A, A \cap B) \quad \text{ (by conservativity)}
\]

\[
= Q(A, A \cap \lambda x: A(x).B(x)) \quad \text{ (by defensible assumptions about Pres. Projection)}
\]

\[
= Q(A, \lambda x: A(x).B(x)) \quad \text{ (by conservativity)}
\]

\[
= Q(A, \lambda x. B(\text{theAx}))
\]

3. Condition C

Wh-movement

(15) a. *He i visited a friend of John's i.

b. A friend of John's i visited him i.

QR

(16) A boy talked to every girl. \(\rightarrow\) [every girl] A boy talked to t.

(17) ??/*Someone introduced him i to every friend of John's i. \(\rightarrow\) [every friend of John's i] Someone introduced him to t. (Cf. *Someone introduced John i to every friend of his i. *)

The copy theory of movement seems to account for the fact that movement doesn’t obviate Condition C:

(15') c. [which friend of John's i] he i visited [which friend of John's i].

(16') [every friend of John's i] Someone introduced him i to [every friend of John's i].
But if a Copy Insensitive rule is used to interpret the chain, it is not clear why Condition C is Copy Sensitive.

If a Copy Sensitive Rule is used instead, the Condition C facts are expected:

(18) every boy A girl talked to every boy. →
 every boy λx [a girl talked to the boy x]?

(19) [every friend of John's] Someone introduced him to [every friend of John's]. →
 [every friend of John's] λx Someone introduced him to
 the friend of John's (identical to) x.

4. Antecedent Contained Deletion

4.1. ACD seems to argue for a Copy Insensitive Rule.

Parallelism: An elided VP must be identical to an antecedent VP at LF.

This condition can be used to investigate the nature of LF structures. In particular, Antecedent Contained Deletion suggests that LF structures cannot be identical to surface structures:

(20) John [VP likes every boy Mary does <likes t>]
 Antecedent VP

However, the structures that are derived by QR can be the LF structures¹:

(20') [every boy λx Mary does <likes x>]
 λy John likes y

But this is true only if a Copy Insensitive Rule is adopted. Under a Copy Sensitive Rule, we get the following structure:

(20'') [every boy λx Mary does <likes the boy x>]
 λy John likes [the boy y that λz Mary does <likes z/the boy z>]

4.2. However, Sauerland...

4.2.1. Kennedy's puzzle

(21) a. I saw a book about a personj you did <saw tj>
 b. I like the car that belongs to the manj you do <like tj>

¹ Unfortunately, I don’t have time to discuss Jacobson’s (1992) alternative. I find it quite ingenious, and would be very much interested in an extension that could deal with the evidence that the copy theory of movement is relevant (extraposition, see the discussion of (41) below and the Kennedy/Sauerland puzzle).
Sauerland's explanation: The sentences do not obey Parallelism because the trace in the relative clause and the trace of QR are semantically distinct (given the copy theory of movement).

(22) a. *[a book about a person you <saw person>]i
 I saw bookj.
 b. [the car that belongs to the man you <like man>]i
 I like carj.

4.2.2. Sauerland's extension

(23) a. *I visited a city near the lakej John did <visited tj>.
 b. (??)I visited a city near the cityj John did <visited tj>.
 c. I visited a city near the onej John did <visited tj>.

(24) a. [a city near the lakej John <visited lake>]i
 I visited cityj.
 b. [a city near the cityj John <visited cityj>]i
 I visited cityj.

4.3. The Problem

The existence of ACD poses a serious problem for Copy Sensitive Rules. However, Sauerland’s contrast suggests that we might want to deal with this problem. Specifically, it suggests that if we had a way to overcome the problems that ACD poses for a Copy Sensitive Rule, we might be able to account for Kennedy’s puzzle.2

4.4. Extraposition/late merger provides the answer

4.4.1. Background (Fox and Nissenbaum 1999)

(25) We saw a painting yesterday by John.

a.
 Wei
 VP
 ti
 saw a painting yesterday

b. QR (‘covert’)
 Wei
 VP
 a-painting
 ti
 saw a painting yesterday

c. adjunct merger (‘overt’)
 Wei
 VP
 a-painting by John
 ti
 saw a painting yesterday

2 Sauerland provides an account that relies on an Economy condition argued for in Fox (1995, 1999). See also Merchant (2000). However, the economy condition is tailored specifically to the puzzle at hand (see Fox (2002) for more details).
Copy Insensitive Rule: \[[A \text{ painting by John}] \lambda x \text{ we saw } [x]\]
Copy Sensitive Rule: \[[A \text{ painting by John}] \lambda x \text{ we saw } [\text{the painting } x]\]

A derivation along these lines was proposed for overt \textit{wh}-movement by Lebeaux (1988). The extension to QR is straightforward under the copy theory of movement and the assumption that covert movement involves pronunciation of a lower copy (the phonological theory of QR, Bobaljik, Groat and O’neil, Pesetsky). (For related but different proposals see Guéron and May 1984 and Reinhart 1991.)

1. **Williams' generalization:** When an adjunct \(\beta\) is extraposed from a “source NP” \(\alpha\), the scope of \(\alpha\) is at least as high as the attachment site of \(\beta\) (the extraposition site).

Scope diagnosed by variable binding in ellipsis:

2. a. I read a/every book before you did.
 b. I read a/every book that John had recommended before you did.
 c. I read a/every book before you did that John had recommended.

(2a,b) show an ambiguity that is explained in terms of the relative scope of the object quantifier and the \textit{before}-clause (see Sag 1976 and Williams 1977). (2c) has only the interpretation in which the object quantifier has wide scope.

Scope diagnosed by NPI licensing:

\textit{Adjunct-extraposition bleeds Condition C:}

3. a. I gave him a book yesterday that John liked
 b. ?? I gave him a book that John liked yesterday

Some speakers don't find (3b) that bad. This is somewhat expected given the availability of string-vacuous extraposition. The fact that (3b) is unacceptable to many speakers probably reflects a processing preference for low attachment. (See Phillips 1996.)

Conflicting requirements on scope of the source DP — \textit{Condition C vs. NPI}

4. a. I wanted him not to talk to a (certain) girl yesterday that John has known for years
 b. *I wanted him not to talk to any girl yesterday that John has known for years.
 c. I wanted John not to talk to any girl yesterday that he has known for years.

\footnote{This is a slight modification (due to Fox and Nissenbaum 1999) of the original statement of the generalization (Williams 1974, chapter 4): originally William made no complement/adjunct distinction, perhaps because he focused on comparative- and result-extraposition, where, as Bhatt and Pancheva argue, complements pattern with NP adjuncts (for reasons having to do with the nature of Trace Conversion).}
Relative Scope of a negative QP and a rational clause:

(5) a. John must miss no assignment that is required by his Math teacher in order to stay in school.
 b. #John must miss no assignment in order to stay in school that is required by his Math teacher.
 c. John must hand in no assignment in order to stay in school that is required by his Math teacher.

4.4.2. Back to Antecedent Contained Deletion

Simple QR doesn't work. But QR with late merger does:

(20") [every boy \(\lambda x \text{ Mary does <likes the boy x>} \)]
\(\lambda y \text{ John likes [the boy y that } \lambda z \text{ Mary does <likes z/the boy z>} \)]

Assumption (following Sauerland 1998): Relative clauses are both head internal and head external:

(26) Every [boy [boy Mary likes boy]]
 \(\rightarrow \) Every' (boy' \(\cap \lambda x \text{ Mary likes the boy x)} \)

The derivation for ACD:

(27) [VP John likes every boy]. -QR-->
 [[VP John likes every boy] every boy]. -adjunct insertion-->
 [[VP John likes every boy] every boy that Mary does <likes boy>].
 [every boy \(\lambda x \text{ Mary does <likes the boy x>} \)]
 \(\lambda y \text{ John likes the boy y} \)

Extraposition/late merger is necessary for ACD because, without it, the VP and its antecedent don't satisfy Parallelism.

Sauerland ACD:

(28) [VP I visited a city]. -QR-->
 [[VP I visited a city] a city]. -adjunct insertion-->
 [[VP I visited a city] a city near the city that John did <visited city>].
 [a city near the city \(\lambda x \text{ John did <visited the city x}> \)]
 \(\lambda y \text{ I visited the city y} \)
Late Merger is restricted to adjuncts (Lebeaux)

Fox and Nissenbaum:

Extraposition does not take an adjunct out of the Noun Phrase (even though it does take the adjunct to a position above elements that c-command the Noun Phrase at SS, compare with Buring and Hartmann 1997)

Sauerland:

Note: the restriction to adjuncts follows automatically from the copy-sensitive rule. See Bhatt and Pancheva (this workshop) for an exception that proves the rule.

4.5.Evidence that extraposition is crucial for ACD

Extraposition (analyzed as Late Merger) is necessary to make ACD compatible with a Copy Sensitive Rule. Therefore, evidence that extraposition is obligatory in ACD constructions can be taken as evidence for a Copy Sensitive Rule. (cf. Baltin 1987, Lasnik 1993, Tiedeman 1995, and Wilder 1995).
(35) a. *John said that everyone who you did was a genius.
 b. John said that everyone was a genius who you did.
 (Tiedeman 1995, Wilder 1995)

(36) a. *I know how much every item that you do costs.
 b. ??I know how much every item costs that you do.
 (compare Moltmmann and Szabolcsi 1994 with Fox 2000)

(37) a. I discussed nothing that you did <*discussed in order to upset your teacher> in order to upset my teachers.
 b. I did none of the dives that my coach told me to <*do in order to prove that I could> in order to prove that I could.
 b. Bill read every book that I did <*read with great care> with great care.

(38) a. I discussed nothing in order to upset my teachers that you did <discussed in order to upset your teacher>.
 b. I did none of the dives in order to prove that I could that my coach told me to <do in order to prove that I could>.
 b. Bill read every book with great care that I did. <read with great care>

(39) a. I read the book after you did <read it>
 b. *I read the book Bill did <read it after you read it> after you did <read it>
 c. I read the book after you did <read it> that Bill did <read it after you did>

(40) a. You sent him<i> the letter that John<i> expected you would.
 b. You introduced him<i> to everyone John<i> wanted you to.
 c. I reported him<i> to every cop John<i> was afraid I would.

(41) a. *John will say that Mary put every book that Bill also will <say that Mary put on the shelf> on the shelf.
 b. John will say that Mary put on the shelf every book that Bill also will <say that Mary put on the shelf>.
 c. Jacobson (1992): (41a) is bad since here ACD depends on the “wrap” rule for pronunciation, which places the NP after the head of the complex transitive verb, which in turn serves as antecedent for ellipsis. This account doesn’t extend to (41c).
 c. John will say that Mary put every book on the shelf that Bill also will <say that Mary put on the shelf>.

Note: There are examples where extraposition doesn’t seem to be necessary (Larson and May 1990). In Fox (2002) I provide various pieces of evidence that this is an illusion. The sentences involve rightward movement of various constituents.
5. A constraint on Extraposition

The fact that QPs are conservative makes the semantics of sentences with late-merger (extraposition) identical to the semantics of otherwise identical sentences with early merger (without extraposition).

However, if we can do Late Insertion in a somewhat embedded position, the situation might be different.

5.1. Rochemont and Culicover's discovery

(42) a. John saw an alleged mouse from Mars yesterday
 b. John saw an alleged Mouse yesterday from Mars.

Rochemont and Culicover: When EC is "extraposed" from DP, NP does not dominate EC.

(43) 1. An [[alleged mouse] from Mars]
 2. An [alleged [mouse from Mars]]

(43') 1. $\lambda Q. \exists x(Qx \& \text{from-Mars'}(x) \& \text{alleged'}(\text{mouse'}(x)))$
 2. $\lambda Q. \exists x(Qx \& \text{alleged'}(\text{mouse'}(x) \& \text{from-Mars'}(x)))$

(44) $[\text{alleged}](P)(x) = 1$ iff there is an allegation that P is true of x.

When a speaker utters *An alleged mouse is in the room*, there is a feeling that the speaker doesn’t believe that the alleged mouse is a real mouse. This is probably an implicature but since the distinction doesn’t matter for most of the cases we will look at, we can think of it as part of the meaning of the lexical entry.

(45) $[\text{alleged}](P)(x) = 1$ iff P is not true of x and there is an allegation that P is true of x.

5.2. The Complement Adjunct distinction

 b. #John read an alleged book yesterday by Ronald Reagan.

Context (that might help with A, thanks to Tamina Stephenson): Irene’s sister wrote a book the protagonist of which is a semanticist who left Germany at a young age to study at a university on the east coast of the United States. Someone makes the allegation that the story is based on the life of Irene Heim.

A similar Context doesn’t help with b: there’s this book about indefinite and everybody believes the author is Irene Heim. Someone makes the allegation that the author is actually Ronald Reagan.

5.3. The constraint is more subtle

(42b) can also be true when the alleged mouse is not necessarily from Mars, i.e., only alleged to be from Mars.
Evidence in favor:

(47) a. I saw an alleged antique yesterday from the 15th century.
 b. I met an alleged New-Yorker yesterday from the Upper East Side.
 c. They told me about an alleged alien the other day from Mars.

5.4. An Explanation

The observation is very surprising. There is no obvious way of getting the relevant reading from a parse of an alleged NP adjunct.

Take (47a) as an example. The relevant reading, given Rochemont and Culicover’s observation, has to be somewhat similar to the following paraphrase:

(48) \(\exists x (\text{alleged(antique}(x)) \land \text{alleged(from-the-15th-century}(x)) \land \text{saw}(I,x)) \)

The relevant reading is one under which (47a) is true if the thing I saw is (a) alleged to be an antique and (b) alleged to be from the 15th century.

However, we have more options once we consider the independent contribution to meaning that the trace makes under a Copy Sensitive Rule.

(49) a. John saw an alleged mouse yesterday from Mars.
 b. Right after John saw an alleged mouse from Mars, he talked about the alleged mouse to various reporters.

(50) a. John saw an alleged antique yesterday from the 15th century.
 b. Right after John saw an alleged antique from the 15th century, he talked about the alleged antique with an art dealer.

(47a’) [An alleged [antique from the 15th century]]
 \(\lambda x \text{ I saw } [\text{the alleged antique (identical to) } x] \)

6. An argument from Focus (Sauerland 2003)

(51) a. I read every book before YOU read every book.

7. Conservativity

It is hard to distinguish between Copy Sensitive and Copy Insensitive rules because quantifiers in NL are conservative.

\[
Q(A,B) = Q(A, A \cap B) \quad \text{(by conservativity)}
\]
\[
= Q(A, A \cap \lambda x: A(x), B(x)) \quad \text{(by defensible assumptions about Pres. Projection)}
\]
\[
= Q(A, \lambda x: A(x), B(x)) \quad \text{(by conservativity)}
\]
\[
= Q(A, \lambda x. B(\text{theAx}))
\]
But a Copy Sensitive Rule might account for conservativity. (We will return to this at the last section.)

Non-conservative quantifiers (if they existed) would be quite pointless.

(52) #Only girls are such that those girls are intelligent.

For a standard non-conservative quantifier, Q, the truth value of Q(A,B) depends on the value of B(x) for objects x that are not in A. However, for such objects B is undefined (since B is really λx.B(\text{the}\ A x) (= λx: A(x).B(x))).

A very tentative attempt to specify the general principle that is at work here:

Q(A,B) is inappropriate if in all worlds in the context set Q(A,B) is not true.

(53) a. #Very few boys in my class have a car, and Every boy drives his car to school.
 b. Very few boys in my class have a car, but one boy drives his car to school.
Beaver 1992

Every (A,B) = 1 iff for every x, s.t. A(x) =1, B(x) =1. If we know that there is an x in A, such that B(x) is undefined, we know there is no way for the sentence to be true.

Some (A,B) = 1 iff there is some x, s.t. A(x) =1 and B(x) =1. If we know that every x in A is such that B(x) is undefined, we know there is no way for the sentence to be true.

Only (A, B) = 1 iff for every x, s.t. A(x) = 0, B(x) = 0. If we know that there is an x in the complement set of A, such that B(x) is undefined, we know there is no way for the sentence to be true.

Under a Copy Sensitive Rule, B(x) is undefined for every x in the complement set of A. Hence, only cannot be a natural language determiner.

Problem with the explanation: The option of extraoposition should allow non-conservative quantifiers to be realized syntactically. In other words, it is predicted that non-conservative quantifiers should exist, but that they should be restricted to extraoposition environments.

This, Bhatt and Pancheva argue, is precisely what happens.
Conclusions:

Claims:

A. Shared assumption (1) needs to be modified. The argument of a restrictive quantifier (at least when there is Inverse Scope) is a partial function defined only for individuals that satisfy the restrictor:

\[(3'a) \quad \lambda P_{<e,t>}.[[\text{book}]] \subseteq P\]
\[\lambda x_5: x \text{ is a book. A girl read } x\]

B. Inverse Scope Is derived by Movement, and traces are copies.

\[(2'') \quad \text{[A girl gave [every book]}_1 \text{ to John] [every book]}_1\]

The quantificational phrase is present at the base position, and its restrictor is accessed as part of the semantic rule for the interpretation of movement (predicate abstraction).

\[[\text{(2'')a}] = [[\text{every book is such that a girl read that book}]]\]

Consequences for Direct Compositionality (DC):

Assuming that claims (A) and (B) are right, does it mean that DC is wrong?

No. It only has consequences for the way we ought to develop a theory within DC. It would tell us that we should develop a theory with (complex) traces, and one can do this (see Jacobson 2002).

However, some of the arguments for claims (A) and (B) are based on particular assumptions, which cannot easily be implemented within DC, in particular assumptions about the nature of Binding Theory, and the analysis of extraposition.

To the extent that the assumptions are independently motivated and to the extent that they converge with argument that are theory neutral (e.g., the alleged-mouse-from-Mars argument or the argument based on the Kennedy/Sauerland puzzle) we have a real challenge for DC.